nts, drug delivery vehicles and diagnostic biomarkers.
EVs typically have a hydrodynamic diameter of 30-200 nm; for the small extracellular vesicles subgroup (historically referred to as exosomes), this value is thought to be 30-120 nm, which is smaller than the theoretically achievable resolution of a conventional light microscope. The fate and interactions of extracellular vesicles inside cells are, therefore, difficult to study, which is limiting researchers in the field.
Recently developed super-resolution techniques, including PALM and dSTORM, overcome the diffraction limit of light and allow for EVs and their contents to be investigated at molecular resolution.
The Nanoimager is the world’s first desktop-compatible microscope able to easily visualize EVs with 100x magnification and a resolution reaching 20 nm. Importantly, it uses ultra-high single-molecule sensitivity to track single vesicles with extremely strong signal in fluorescence mode, for sizing and counting using tracking-based methods.
Super-resolution microscopy opens a wide range of possibilities to better understand the mechanisms of extracellular vesicles’ biogenesis and behavior in solution and in cells. Using dSTORM we can now gain detailed knowledge of how and where individual EVs are arranged, localized and clustered.
Subsequently, EVs were immunostained with a combination of antibodies against the most commonly known tetraspanins, CD63 (blue) and CD81 (yellow). The estimated size of the example EV is approximately 156 nm, as judged by the CD63 distribution (blue peaks), since lectin staining accounts for an additional 20-40 nm on each side of the particle. Panel B shows the corresponding exosome linescan with the different biomarker frequencies.
Read more about tracking extracellular vesicles or read the full story at the Extracellular Vesicle Hub.