Molecular interactions means the dynamic interaction between two or more labeled molecules. In cells, advanced microscopy techniques, and single-molecule FRET (smFRET) in particular, are used to understand the relationship between molecules through their spatial organization. For example, interest is growing in the underlying mechanisms of membrane contact sites (MCS) in cellular organelles.
However, often the most important aspect of an interaction is the rate of binding, the dissociation constant, the dynamics and dwell times. This quantitative information is especially useful for understanding the effect of inhibitors and small molecules or solution conditions on the behavior of a particular interaction, such as the activity of an enzyme induced by substrate binding.
Famous examples of these methods applied to protein complexes include counting the subunits in the bacterial flagellar motor and in ion channels, as well as measuring the aggregation of amyloid beta associated with Alzheimer’s.
The Nanoimager can measure these single-molecule interactions, and quantitate them, for various types of sample: molecules bound to a surface, in solution, on an artificial membrane or on a cell membrane close to a glass coverslip. Using TIRF, smFRET can be performed on live cell membranes with the Nanoimager.
In other methods, the Nanoimager can characterize molecular interactions using dynamic colocalization of two labeled species, monitoring their position over time. Read more about the single-molecule FRET technique or read further super-resolution microscopy applications.